Fully Distributed Algorithms for Convex Optimization Problems
نویسندگان
چکیده
We design and analyze a fully distributed algorithm for convex constrained optimization in networks without any consistent naming infrastructure. The algorithm produces an approximately feasible and near-optimal solution in time polynomial in the network size, the inverse of the permitted error, and a measure of curvature variation in the dual optimization problem. It blends, in a novel way, gossip-based information spreading, iterative gradient ascent, and the barrier method from the design of interior-point algorithms.
منابع مشابه
Asynchronous Gossip-Based Random Projection Algorithms for Fully Distributed Problems
We consider fully distributed constrained convex optimization problems over a network, where each network agent has a distinct objective and constraint set. We discuss a gossipbased random projection algorithm (GRP) with uncoordinated diminishing stepsizes. We prove that, when the problem has a solution, the iterates of all network agents converge to the same optimal point with probability 1.
متن کاملA Hybrid MOEA/D-TS for Solving Multi-Objective Problems
In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This i...
متن کاملPrimal-dual path-following algorithms for circular programming
Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...
متن کاملParticle Swarm Optimization for Hydraulic Analysis of Water Distribution Systems
The analysis of flow in water-distribution networks with several pumps by the Content Model may be turned into a non-convex optimization uncertain problem with multiple solutions. Newton-based methods such as GGA are not able to capture a global optimum in these situations. On the other hand, evolutionary methods designed to use the population of individuals may find a global solution even for ...
متن کاملDistributed Non-Convex First-Order Optimization and Information Processing: Lower Complexity Bounds and Rate Optimal Algorithms
We consider a class of distributed non-convex optimization problems often arises in modern distributed signal and information processing, in which a number of agents connected by a network G collectively optimize a sum of smooth (possibly non-convex) local objective functions. We address the following fundamental question: For a class of unconstrained non-convex problems with Lipschitz continuo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 20 شماره
صفحات -
تاریخ انتشار 2007